Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Международный неврологический журнал Том 19, №7, 2023

Вернуться к номеру

Неврологічні розлади при загальному перегріванні організму (науково-літературний огляд)

Авторы: Кравець О.В., Єхалов В.В., Седінкін В.А., Пилипенко О.В.
Дніпровський державний медичний університет, м. Дніпро, Україна

Рубрики: Неврология

Разделы: Справочник специалиста

Версия для печати


Резюме

На засадах розуміння патофізіології теплового удару було висунуте припущення, що тепловий інсульт можна розглядати як форму гіпертермії, яка пов’язана із системною запальною відповіддю, що призводить до синдрому поліорганної дисфункції, при якому переважає енцефалопатія. Механізми ней-ронального ушкодження при тепловому інсульті включають: клітинні ефекти (пошкодження мембран, мітохондрій та ДНК, стимуляція ексайтотоксичних механізмів, денатурація білка), місцеві ефекти (ішемія, запальні зміни, набряк, вивільнення цитокінів, пошкодження судин), системні ефекти (зміни церебрального кровотоку, ендотоксемія, транслокація бактерій через дисфункційний шлунково-кишковий тракт). Неврологічні прояви теплового удару перебігають у 3 стадії відповідно до часу виникнення: гостру, реконвалесцентну та пізню сталу. У гострій стадії переважає церебральна дисфункція. Перегрівання організму безпосередньо спричиняє поліетіологічну церебральну дисфункцію з глибоким пригніченням свідомості в гострій стадії; розвиваються циркуляторний шок, гіпоксія і церебральна ішемія, надмірне накопичення цитотоксичних вільних радикалів та оксидантне пошкодження мозку. У стадії реконвалесценції церебральна дисфункція поступово зменшується. Характерною для цієї стадії є перехідна мозочкова дисфункція. Пізня стала стадія характеризується довгостроковими неврологічними та серцево-судинними ускладненнями із постійним летальним ризиком. Коли розвивається пізня стадія зі сталим неврологічним дефіцитом, дисфункція мозочка є найпоширенішим симптомом. Відстрочений початок дегенерації і деаферентації свідчить про те, що синдром не спричинений первинним ураженням сам по собі, але може бути наслідком розвитку постсинаптичної надчутливості або вторинної реорганізації залучених шляхів.

Based on the understanding of the pathophysiology of heat stroke, it has been suggested that heat stroke can be considered as a form of hyperthermia that is associated with a systemic inflammatory response leading to a syndrome of multiple organ dysfunction in which encephalopathy predominates. Mechanisms of neuronal injury in heat stroke include: cellular effects (damage to membranes, mitochondria, and DNA, stimulation of excitotoxic mechanisms, protein denaturation), local effects (ischemia, inflammatory changes, edema, cytokine release, vascular damage), systemic effects (changes in cerebral blood flow, endotoxemia, translocation of bacteria through a dysfunctional gastrointestinal tract). Neurological manifestations of heat stroke develop in 3 stages according to the time of occurrence: acute, convalescent and late. In the acute stage, cerebral dysfunction prevails. Overheating of the body directly caused polyetiological cerebral dysfunction with deep suppression of consciousness in the acute stage; circulatory shock, hypoxia and cerebral ischemia, excessive accumulation of cytotoxic free radicals and oxidant brain damage developed. During the convalescence stage, cerebral dysfunction gradually decreases. This stage is characterized by transient cerebellar dysfunction. For the late stage, long-term neurological and cardiovascular complications with a constant risk of death are typical. When late stage with permanent neurologic deficits develop, cerebellar dysfunction is the most common symptom. The delayed onset of degeneration and deafferentation suggests that the syndrome is not caused by the primary lesion itself but may be a consequence of postsynaptic hypersensitivity or secondary reorganization of the involved pathways.


Ключевые слова

загальне перегрівання організму; нейрональне ушкодження; стадії; ускладнення

general body overheating; neuronal damage; stages; complications


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Bouchama A., Abuyassin B., Lehe C. et al. Classic and exertional heatstroke. Nat. Rev. Dis. Primers. 2022. 8(8). 1-23 (2022). doi: https://doi.org/10.1038/s41572-021-00334-6.
2. Rublee C., Dresser C., Giudice C., Lemery J., Sorensen C. Evidence-Based Heatstroke Management in the Emergency Department. West J. Emerg. Med. 2021. 22(2). 186-195. doi: 10.5811/westjem.2020.11.49007.
3. Kiyatkin E.A., Sharma H.S. Permeability of the blood-brain barrier depends on brain temperature. Neuroscience. 2009. 161(3). 926-39. doi: 10.1016/j.neuroscience.2009.04.004. 
4. Koh Y.H. Heat Stroke with Status Epilepticus Secondary to Posterior Reversible Encephalopathy Syndrome (PRES). Case Rep. Crit. Care. 2018. 3597474. doi: 10.1155/2018/3597474.
5. Qiu C., Kivipelto M., von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci. 2009. 11(2). 111-28. doi: 10.31887/DCNS.2009.11.2/cqiu. 
6. Walter E.J., Carraretto M. The neurological and cognitive consequences of hyperthermia. Critical Care. 2016. 20. 199. doi: 10.1186/s13054-016-1376-4.
7. Bazille C., Megarbane B., Bensimhon D. et al. Brain damage after heat stroke. J. Neuropathol. Exp. Neurol. 2005. 64(11). 970-975. doi: 10.1097/01.jnen.0000186924.88333.0d. 
8. White M.G., Luca L.E., Nonner D. et al. Cellular mechanisms of neuronal damage from hyperthermia. Progress in Brain Research. 2007. 162. 347-371. doi: 10.1016/s0079-6123(06)62017-7. 
9. Yu T., Wang L., Yoon Y. et al. Morphological control of mitochondrial bioenergetics. Front. Biosci. 2015. 20. 229-246. https://doi:org/10.2741/4306.
10. Akbarian A., Michiels J., Degroote J. et al. Association between heat stress and oxidative stress in poultry: mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016. 7. 37-50. https://doi.org/10.1186/s40104-016-0097-5.
11. Stanculescu D., Sepúlveda N., Lim C.L. Lessons From Heat Stroke for Understanding Myalgic Encephalomyelitis. Chronic Fatigue Syndrome. Frontiers in Neurology. 2021. 12. 789784. doi: 10.3389/fneur.2021.789784.
12. Ni X.X., Wang C.L., Guo Y.Q., Liu Z.F. Analysis of Clinical Symptoms of Guillain-Barré Syndrome Induced by Heat Stroke: Three Case Reports and Literature Review. Front. Neurol. 2022. 13. 910596. doi: 10.3389/fneur.2022.910596.
13. Chauhan N.R., Kapoor M., Singh L.P. et al. Heat stress-induced neuroinflammation and aberration in monoamine levels in hypothalamus are associated with temperature dysregulation. Neuroscience. 2017. 358. 79-92. doi: 10.1016/j.neuroscience.2017.06.023. 
14. Bongioanni P., Carratore R.D., Corbianco S. et al. Climate change and neurodegenerative diseases. Environmental Research. 2021. 201. 111511. https://doi.org/10.1016/j.envres.2021.111511.
15. Sharma H.S., Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog. Brain Res. 2007. 162. 245-73. doi: 10.1016/S0079-6123(06)62013-X. 
16. Muresanu D.F., Sharma A., Patnaik R., Menon P.K., Mössler H., Sharma H.S. Exacerbation of blood-brain barrier breakdown, edema formation, nitric oxide synthase upregulation and brain pathology after heat stroke in diabetic and hypertensive rats. Potential neuroprotection with cerebrolysin treatment. Int. Rev. Neurobiol. 2019. 146. 83-102. doi: 10.1016/bs.irn.2019.06.007. 
17. Wang C.-C., Tsai M.-K., Chen I.-H., Hsu Y.-D., Hsueh C.-W., Shiang J.-C. Neurological manifestations of heat stroke. Case report and literature reviev. Taiwan Crit. Care Med. 2008. 9. 257-266.
18. Peng H., Sola A., Moore J., Wen T. Caspase inhibition by cardiotrophin-1 prevents neuronal death in vivo and in vitro. J. Neurosci. Res. 2010. 88(5). 1041-1051. doi: 10.1002/jnr.22269.
19. Bellmann K., Charette S.J., Nadeau P.J., Poirier D.J., Loranger A., Landry J. The mechanism whereby heat shock induces apoptosis depends on the innate sensitivity of cells to stress. Cell Stress Chaperones. 2010. 15(1). 101-13. doi: 10.1007/s12192-009-0126-9. 
20. Sun G., Qian S., Jiang Q. et al. Hyperthermia-induced disruption of functional connectivity in the human brain network. PLoS One. 2013. 8(4). e61157. doi: 10.1371/journal.pone.0061157. 
21. Ruszkiewicz J.A., Tinkov A.A., Skalny A.V. et al. Brain diseases in changing climate. Environ Res. 2019. 177. 108637. doi: 10.1016/j.envres.2019.108637. 
22. Ely B.R., Brunt V.E., Minson C.T. et al. Can targeting glutamate receptors with long-term heat acclimation improve outcomes following hypoxic injury? Temperature. 2015. 2(1). 51-52. doi: 10.4161/23328940.2014.992657.
23. Kim J.A., Connors B.W. High temperatures alter physio-logical properties of pyramidal cells and inhibitory interneurons in hippocampus. Front. Cell Neurosci. 2012. 6. 27. doi: 10.3389/fncel.2012.00027. 
24. Franklin T.B., Krueger-Naug A.M., Clarke D.B., Arrigo A.P., Currie R.W. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int. J. Hyperther. 2005. 21(5). 379-92. doi: 10.1080/02656730500069955.
25. Multhoff G. Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods. 2007. 43(3). 229-37. doi: 10.1016/j.ymeth.2007.06.006. 
26. Li C.W., Lin Y.F., Liu T.T., Wang J.Y. Heme oxygenase-1 aggravates heat stress-induced neuronal injury and decreases autophagy in cerebellar Purkinje cells of rats. Experimental Biology and Medicine. 2013. 238(7). 744-754. https://doi:org/10.1177/1535370213493705.
27. Racinais S., Cresswell A.G. Temperature affects maximum H-reflex amplitude but not homosynaptic postactivation depression. Physiol. Rep. 2013. 1(2). 00019. doi: 10.1002/phy2.19.
28. Yang M., Li Z., Zhao Y. et al. Outcome and risk factors associated with extent of central nervous system injury due to exertional heat stroke. Medicine (Baltimore). 2017. 96(44). 8417. doi: 10.1097/MD.0000000000008417.
29. Lee B.H. Atypical brain imaging findings associated with heat stroke. A patient with rhabdomyolysis and acute kidney injury: A case report. Radiol. Case Rep. 2020. 15(5). 560-563. doi: 10.1016/j.radcr.2020.02.007. 
30. Cifuentes M.A., Marín F.V., Sáez M.V.V. Heat stroke with neurological involvement. Neurology Perspectives. 2022. 8. 1-3. https://doi:org/10.1016/j.neurop.2022.08.004.
31. Hiramatsu G., Hisamura M., Murase M. et al. A Case of Heatstroke Encephalopathy With Abnormal Signals on Brain Magnetic Resonance Imaging. Cureus. 2021. 13(8). 17053. doi: 10.7759/cureus.17053.
32. Shimada T., Miyamoto N., Shimada Y. et al. Analysis of Cli–nical Symptoms and Brain MRI of Heat Stroke: 2 Case Reports and a Literature Review. J. Stroke Cerebrovasc. Dis. 2020. 29(2). 104511. doi: 10.1016/j.jstrokecerebrovasdis.2019.104511.
33. Guerrero W.R., Varghese S., Savitz S. et al. Heat stress presenting with encephalopathy and MRI findings of diffuse cerebral injury and hemorrhage. BMC Neurol. 2013. 13. 63. https://doi.org/10.1186/1471-2377-13-63.
34. Kamidani R., Okada H., Kitagawa Y. et al. Severe heat stroke complicated by multiple cerebral infarctions: a case report. J. Med. Case Rep. 2021. 15(1). 24. doi: 10.1186/s13256-020-02596-2.
35. Kenny G.P., Wilson T.E., Flouris A.D., Fujii N. Chapter 31. Heat exhaustion. Handbook of Clinical Neurology. 2018. 157. 505-529. https://doi.org/10.1016/B978-0-444-64074-1.00031-8.
36. Lee K.L., Niu K.C., Lin M.T., Niu C.S. Attenuating brain inflammation, ischemia, and oxidative damage by hyperbaric oxygen in diabetic rats after heat stroke. J. Formos Med. Assoc. 2013. 112(8). 454-62. doi: 10.1016/j.jfma.2012.02.017. 
37. Christoforidou E., Joilin G., Hafezparast M. Potential of activated microglia as a source of dysregulated extracellular microRNAs contributing to neurodegeneration in amyotrophic lateral sclerosis. J. Neuroinflammation. 2020. 17. 135. https://doi.org/10.1186/s12974-020-01822-4.
38. Khan А.А. Heat related illnesses Review of an ongoing challenge. Saudi Medical Journal. 2019. 40 (12). 1195-1201. doi: 10.15537/smj.2019.12.24727.
39. Suzuki K., Tominaga T., Ruhee R.T., Ma S. Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants (Basel). 2020. 9(5). 401. doi: 10.3390/antiox9050401.
40. Jakkani R.K., Agarwal V.K., Anasuri S., Vankayalapati S., Koduri R., Satyanarayan S. Magnetic resonance imaging findings in heat stroke-related encephalopathy. Neurol. India. 2017. 65. 1146-8. doi: 10.4103/neuroindia.NI_740_16.
41. Kuzume D., Inoue S., Takamatsu M., Sajima K., Kon-No Y., Yamasaki M. [A case of heat stroke showing abnormal diffuse high intensity of the cerebral and cerebellar cortices in diffusion weighted image]. Rinsho Shinkeigaku. 2015. 55(11). 833-839. doi: 10.5692/clinicalneurol.cn-000755. (In Japanese).
42. Cao L., Wang J., Gao Y. et al. Magnetic resonance imaging and magnetic resonance venography features in heat stroke: a case report. BMC Neurol. 2019. 19(1). 133. https://doi.org/10.1186/s12883-019-1363-x.
43. Goldstein L.S., Dewhirst M.W., Repacholi M., Kheifets L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int. J. Hyperthermia. 2003. 19(3). 373-84. doi: 10.1080/0265673031000090701. 
44. Cremer O.L., Kalkman C.J. Cerebral pathophysiology and clinical neurology of hyperthermia in humans. Prog. Brain Res. 2007. 162. 153-69. doi: 10.1016/S0079-6123(06)62009-8.
45. Qian S., Jiang Q., Liu K. et al. Effects of short-term environmental hyperthermia on patterns of cerebral blood flow. Physiol. Behav. 2014. 128. 99-107. doi: 10.1016/j.physbeh.2014.01.028. 
46. Sonkar S.K., Soni D., Sonkar G.K. Heat stroke presented with disseminated intravascular coagulation and bilateral intracerebral bleed. BMJ Case Rep. 2012. 2012. 2012007027. doi: 10.1136/bcr-2012-007027. 
47. Grogan H., Hopkins P.M. Heat stroke: implications for critical care and anaesthesia. Br. J. Anaesth. 2002. 88(5). 700-707. doi: 10.1093/bja/88.5.700. 
48. Bondar V.M., Pilipenko M.M., Ovsienko T.V., Nevmerzhytskyi I.M. Hyperthermic syndromes: etiology, pathogenesis, diagnosis and intensive therapy. Emergency medicine. 2018. 89(2). 7-16. doi: 10.22141/2224-0586.2.89.2018.126596. (In Ukrainian).
49. Loskutov O.A., Bondar M.V., Drudzina O.M., Maruniak S.R., Kolesnykov V.H. Heat stroke during severe sports overload: a clinical case. Emergency medicine. 2021. 17(2). 131-136. doi: https://doi.org/10.22141/2224-0586.17.2.2021.230661. (In Ukrainian).
50. Garcia C.K., Renteria L.I., Leite-Santos G., Leon L.R., Laitano O. Exertional heat stroke: pathophysiology and risk factors. BMJ Medicine. 2022. 1. 000239. doi: 10.1136/bmjmed-2022-000239.
51. Vizir V.A., Zaika I.V. Diseases caused by the action of thermal factors (heat and cold) on the body: educational and methodological guide. Zaporizhzhia: ZDMU, 2019. 67 p. (In Ukrainian).
52. Deleu D., Siddig A.E., Kamran S., Kamha A.A., Zalabany H.A. Downbeat nystagmus following classical heat stroke. Clin. Neurol. Neurosur. 2005. 108(1). 102-104. doi: 10.1016/j.clineuro.2004.12.009.
53. Rav-Acha M., Shuvy M., Hagag S., Gomori M., Biran I. Unique persistent neurological sequelae of heat stroke. Mil. Med. 2007. 172(6). 603-606. doi: 10.7205/milmed.172.6.603.
54. Lee S., Lee S.H. Exertional heat stroke with reversible severe cerebral edema. Clin. Exp. Emerg. Med. 2021. 8(3). 242-245. doi: 10.15441/ceem.19.085. 
55. Mégarbane B., Résière D., Shabafrouz K., Duthoit G., Delahaye A., Delerme S., Baud F. Etude descriptive des patients admis en réanimation pour coup de chaleur au cours de la canicule d’août 2003. Presse Med. 2003. 32(36). 1690-1698. (in French).
56. Lyons J.L., Cohen A.B. Selective cerebellar and basal ganglia injury in neuroleptic malignant syndrome. J. Neuroimaging. 2013. 23(2). 240-1. doi: 10.1111/j.1552-6569.2011.00579.x.
57. Laxe S., Zúniga-Inestroza L., Bernabeu-Guitart M. Manifestaciones neurologicas y su impacto funcional en sujetos que han padecido un golpe de calor [Neurological manifestations and their functional impact in subjects who have suffered heatstroke]. Rev. Neurol. 2013. 56(1). 19-24. doi: 10.33588/rn.5601.2012145. (In Spanish). 
58. McNamee D., Rangel A., O’Doherty J.P. Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex. Nat. Neurosci. 2013. 16. 479-485. doi: 10.1038/nn.3337, PMID: 23416449.
59. Fugate J.E., Rabinstein A.A. Posterior reversible encephalopathy syndrome: clinical and radiological manifestations, pathophysio-logy, and outstanding questions. The Lancet Neurology. 2015. 14(9). 914-925. doi: 10.1016/s1474-4422(15)00111-8. 
60. Herpertz G.U., Nykamp L., Radke O.C. Letaler Hitzeschock mit disseminierter intravasaler Koagulopathie [Lethal Heatstroke with Disseminated Intravascular Coagulopathy]. Anasthesiol Intensivmed Notfallmed Schmerzther. 2022. 57(1). 68-78. doi: 10.1055/a-1508-0726. (In German).

Вернуться к номеру