Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Международный неврологический журнал Том 21, №1, 2025

Вернуться к номеру

Посттравматичний стресовий розлад, метаболічний синдром, діабетичний дистрес і вітамін В1/бенфотіамін

Авторы: Сергієнко В.О. (1), Чемерис О.М. (1), Паньків В.І. (2), Сергієнко О.О. (1)
(1) - Львівський національний медичний університет імені Данила Галицького, м. Львів, Україна
(2) - Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, м. Київ, Україна

Рубрики: Неврология

Разделы: Справочник специалиста

Версия для печати


Резюме

Посттравматичний стресовий розлад (ПТСР) є прогностичним фактором ризику розвитку метаболічного синдрому (МС), депресії, діабетичного дистресу, підвищує небезпеку виникнення кардіометаболічних і нейродегенеративних захворювань (НДЗ). Водночас цукровий діабет (ЦД) 2-го типу та МС також здатні спричиняти розвиток основних неврозоподібних і психіатричних симптомів, характерних для ПТСР. Хронічний стрес пов’язаний із серцево-судинними захворюваннями (ССЗ), ЦД 2-го типу, а також з НДЗ. Мітохондріальна дисфункція, периферичне/центральне хронічне запалення низької інтенсивності (ХЗНІ) та оксидативний стрес (ОС), як ланки в ланцюгах патофізіологічних процесів, усе частіше розглядаються як основні рушійні сили цих захворювань. Отже, втручання, спрямовані на корекцію ХЗНІ і ОС, відповідно до принципів прецизійної медицини, можуть бути більш ефективними варіантами лікування таких пацієнтів. Дефіцит окремих біофакторів, зокрема вітаміну В1, пов’язують із підвищеним ризиком МС, ЦД 2-го типу, ССЗ та НДЗ. Цілеспрямований вплив на ХЗНІ і ОС та порушення мітохондріального метаболізму, використання антиоксидантів, зокрема вітаміну В1/бенфотіаміну (benfotiamine, BFT), може позитивно вплинути не лише на перебіг коморбідних захворювань, але й на основні прояви ПТСР. Корекція порушень статусу тіаміну здійснюється шляхом використання екзогенного вітаміну В1, або BFT. BFT проявляє потужні ефекти на тваринних моделях НДЗ, при стрес-індукованій тривозі, агресії та депресії. Таким чином, BFT можна вважати потенційно безпечним та економічно ефективним препаратом для лікування багатьох захворювань центральної нервової системи. Незважаючи на позитивні моменти, терапевтичний потенціал BFT залишається обмеженим, оскільки позитивна дія потребує застосування високих доз протягом тривалого періоду. In vitro та in vivo продемонстровано, що дибензоїлтіамін, ліпофільне похідне BFT, виявляє антиоксидантну та протизапальну дію в значно нижчих дозах, ніж BFT. Проте для остаточного визначення клінічної доцільності та терапевтичного потенціалу BFT і дибензоїлтіаміну необхідне проведення подальших доклінічних і клінічних досліджень. Значну увагу в огляді приділено аналізу особливостей біологічної ролі вітаміну B1, механізму дії BFT, зокрема впливу на метаболізм глюкози та функцію мітохондрій, стан нейрозапалення, а також нейропротекторним властивостям дибензоїлтіаміну. Пошук проводився в Scopus, Science Direct (від Elsevier) і PubMed, включно з базами даних Medline. Використані ключові слова «тіамін», «бенфотіамін», «дибензоїлтіамін», «посттравматичний стресовий розлад», «метаболічний синдром», «діабетичний дистрес», «цукровий діабет». Для виявлення результатів дослідження, які не вдалося знайти під час онлайн-пошуку, використовувався ручний пошук бібліографії публікацій.

A person with post-traumatic stress disorder (PTSD) is more likely to develop metabolic syndrome (MetS), depression, and diabetic distress. It also raises the risk of cardiometabolic and neurodegenerative diseases (NDD). At the same time, type 2 diabetes mellitus and MetS can also cause the development of core neurosis-like and psychiatric symptoms characteristic of PTSD. Chronic stress is associated with cardiovascular diseases, type 2 diabetes, and NDD. More and more people think that mitochondrial dysfunction, peripheral/central chronic low-grade inflammation (CLGI), and oxidative stress are the main causes of these diseases. Pathophysiological processes link them together. To make things better for these patients, interventions that aim to control CLGI and oxidative stress may be better, following the ideas of precision medicine. Deficiency of certain biofactors, in particular, vitamin B1, is associated with an increased risk of MetS, type 2 diabetes, cardiovascular diseases, and NDD. Targeted effects on CLGI, oxidative stress, and mitochondrial metabolism disorders suggest that the use of antioxidants, particularly vitamin B1/benfotiamine (BFT), may have a positive effect not only on the course of comorbid diseases but also on the main manifestations of PTSD. Exogenous vitamin B1, or BFT, corrects thiamine status disorders. BFT exhibits potent effects in animal models of NDD, stress-induced anxiety, aggression, and depression. Thus, BFT can be considered a potentially safe and cost-effective drug for the treatment of many central nervous system diseases. Despite its positive aspects, the therapeutic potential of BFT remains limited, as beneficial effects require high doses over a long period of time. Dibenzoylthiamine, a lipophilic form of BFT, has been shown to have anti-inflammatory and antioxidant effects at much lower doses than BFT, both in vitro and in vivo. However, more preclinical and clinical studies are needed to be sure of the clinical viability and therapeutic potential of BFT and dibenzoylthiamine. This review pays extra attention to the analysis of the features of the biological role of vitamin B1, the mechanism of BFT action, especially its impact on glucose metabolism and mitochondrial function, the state of neuroinflammation, and how dibenzoylthiamine can protect neurons. We conducted the search in Scopus, Science Direct (from Elsevier), PubMed, and the MEDLINE databases. The keywords used were “thiamine”, “benfotiamine”, “dibenzoylthiamine”, “post-traumatic stress disorder”, “metabolic syndrome”, “diabetic distress”, and “diabetes mellitus”. We conducted a manual search for the bibliography of publications to pinpoint research results that eluded online search.


Ключевые слова

тіамін; бенфотіамін; дибензоїлтіамін; посттравматичний стресовий розлад; метаболічний синдром; діабетичний дистрес; цукровий діабет; огляд літератури

thiamine; benfotiamine; dibenzoylthiamine; post-traumatic stress disorder; metabolic syndrome; diabetic distress; diabetes mellitus; literature review


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Bartoli F, Crocamo C, Carrà G. Metabolic dysfunctions in people with post-traumatic stress disorder. J Psychopathol. 2020;26(1):85-91. doi: 10.36148/2284-0249-372.
2. Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology. 2017 Jan;42(1):254-270. doi: 10.1038/npp.2016.146.
3. Serhiyenko VA, Sehin VB, Pankiv VI, Serhiyenko AA. Post-traumatic stress disorder, dyssomnias, and metabolic syndrome. Mìžnarodnij endokrinologìčnij žurnal. 2024;20(1):58-67. doi: 10.22141/2224-0721.20.1.2024.1359.
4. Kamimura D, Tanaka Y, Hasebe R, Murakami M. Bidirectional communication between neural and immune systems. Int Immunol. 2020 Oct 20;32(11):693-701. doi: 10.1093/intimm/dxz083.
5. Serhiyenko VA, Sehin VB, Serhiyenko LM, Serhiyenko AA. Post-traumatic stress disorder, metabolic syndrome, and chronic low-grade inflammation: A narrative review. Problemi Endocrinnoi Patologii. 2024;81(1):77-83. doi: 10.21856/j-PEP.2024.1.10.
6. Bodnaruc AM, Roberge M, Giroux I, Aguer C. The bidirectional link between major depressive disorder and type 2 diabetes: The role of inflammation. Endocrines. 2024;5(4):478-500. doi: 10.3390/endocrines5040035.
7. Andreadi A, Muscoli S, Tajmir R, et al. Recent pharmacological options in type 2 diabetes and synergic mechanism in cardiovascular disease. Int J Mol Sci. 2023 Jan 13;24(2):1646. doi: 10.3390/ijms24021646.
8. Weinberg Sibony R, Segev O, Dor S, Raz I. Overview of oxidative stress and inflammation in diabetes. J Diabetes. 2024 Oct;16(10):e70014. doi: 10.1111/1753-0407.70014.
9. Ames BN. Prolonging healthy aging: Longevity vitamins and proteins. Proc Natl Acad Sci USA. 2018 Oct 23;115(43):10836-10844. doi: 10.1073/pnas.1809045115.
10. Frank J, Kisters K, Stirban OA, et al. The role of biofactors in the prevention and treatment of age-related diseases. Biofactors. 2021 Jul;47(4):522-550. doi: 10.1002/biof.1728.
11. Hasin DS, Sarvet AL, Meyers JL, et al. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry. 2018 Apr 1;75(4):336-346. doi: 10.1001/jamapsychiatry.2017.4602.
12. Daré LO, Bruand PE, Gérard D, et al. Co-morbidities of mental disorders and chronic physical diseases in developing and emerging countries: a meta-analysis. BMC Public Health. 2019 Mar 13;19(1):304. doi: 10.1186/s12889-019-6623-6.
13. Lange KW, Nakamura Y, Lange KM. Sport and exercise as medicine in the prevention and treatment of depression. Front Sports Act Living. 2023 Mar 9;5:1136314. doi: 10.3389/fspor.2023.1136314.
14. Kangethe A, Lawrence DF, Touya M, Chrones L, Polson M, Evangelatos T. Incremental burden of comorbid major depressive disorder in patients with type 2 diabetes or cardiovascular disease: a retrospective claims analysis. BMC Health Serv Res. 2021 Aug 6;21(1):778. doi: 10.1186/s12913-021-06802-9.
15. Serhiyenko A, Baitsar M, Sehin V, Serhiyenko L, Kuznets V, Serhiyenko V. Post-traumatic stress disorder, insomnia, heart rate variability and metabolic syndrome (narrative review). Proc Shevchenko Sci Soc Med Sci. 2024 Jun;73(1):1-10. doi: 10.25040/ntsh2024.01.07.
16. Pandey A, Wells CR, Stadnytskyi V, et al. Disease burden among Ukrainians forcibly displaced by the 2022 Russian invasion. Proc Natl Acad Sci USA. 2023 Feb 21;120(8):e2215424120. doi: 10.1073/pnas.2215424120.
17. Aguilar M; 1999 European Diabetes Policy Group. A desktop guide to Type 2 diabetes mellitus. Diabet Med. 1999 Sep;16:716-730. doi: 10.1046/j.1464-5491.1999.00166.x.
18. Serhiyenko V, Serhiyenko A. Diabetic Cardiac Autonomic Neuropathy. In: Rodriguez-Saldana JR, editors. The Diabetes Textbook: Clinical Principles, Patient Management and Public Health Issues. 2nd ed. Basel: Springer, Cham: Springer Nature Switzerland AG; 2023. Р. 939-966. doi: 10.1007/978-3-031-25519-9_57.
19. Milstein JL, Ferris HA. The brain as an insulin-sensitive metabolic organ. Mol Metab. 2021 Oct;52:101234. doi: 10.1016/j.molmet.2021.101234.
20. Kciuk M, Kruczkowska W, Gałęziewska J, et al. Alzheimer’s disease as type 3 diabetes: Understanding the link and implications. Int J Mol Sci. 2024 Nov 7;25(22):11955. doi: 10.3390/ijms252211955.
21. Serhiyenko VA, Sehin VB, Serhiyenko LM, Serhiyenko AA. Post-traumatic stress disorder, metabolic syndrome, and the autonomic nervous system. Endokrynologia. 2023;28(4):377-392. doi: 10.31793/1680-1466.2023.28-4.377.
22. Affuso F, Micillo F, Fazio S. Insulin resistance, a risk factor for Alzheimer’s disease: pathological mechanisms and a new proposal for a preventive therapeutic approach. Biomedicines. 2024 Aug 19;12(8):1888. doi: 10.3390/biomedicines12081888.
23. Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer’s disease states. Mol Brain. 2024 Jul 17;17(1):44. doi: 10.1186/s13041-024-01118-1.
24. Yoon JH, Hwang J, Son SU, et al. How can insulin resistance cause Alzheimer’s disease? Int J Mol Sci. 2023 Feb 9;24(4):3506. doi: 10.3390/ijms24043506.
25. Fazio S, Affuso F, Cesaro A, Tibullo L, Fazio V, Calabrò P. Insulin resistance/hyperinsulinemia as an independent risk factor that has been overlooked for too long. Biomedicines. 2024 Jun 26;12(7):1417. doi: 10.3390/biomedicines12071417.
26. Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, et al. Insulin resistance at the crossroad of alzheimer disease pathology: A review. Front Endocrinol (Lausanne). 2020 Nov 5;11:560375. doi: 10.3389/fendo.2020.560375.
27. Lei R, Chen S, Li W. Advances in the study of the correlation between insulin resistance and infertility. Front Endocrinol (Lau–sanne). 2024 Jan 26;15:1288326. doi: 10.3389/fendo.2024.1288326.
28. Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol (Lausanne). 2023 Mar 28;14:1149239. doi: 10.3389/fendo.2023.1149239.
29. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022 Jan 11;55(1):31-55. doi: 10.1016/j.immuni.2021.12.013.
30. Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun. 2020 Jul;87:901-909. doi: 10.1016/j.bbi.2020.02.010.
31. Sen ZD, Danyeli LV, Woelfer M, et al. Linking atypical depression and insulin resistance-related disorders via low-grade chronic inflammation: Integrating the phenotypic, molecular and neuroanatomical dimensions. Brain Behav Immun. 2021 Mar;93:335-352. doi: 10.1016/j.bbi.2020.12.020.
32. Yu Y, Hu G, Yang X, et al. Effect of post-traumatic stress di–sorder on type 2 diabetes and the mediated effect of obesity: A Mendelian randomization study. Front Endocrinol (Lausanne). 2024 Sep 5;15:1375068. doi: 10.3389/fendo.2024.1375068.
33. Moradi Y, Albatineh AN, Mahmoodi H, Gheshlagh RG. The relationship between depression and risk of metabolic syndrome: a meta-analysis of observational studies. Clin Diabetes Endocrinol. 2021 Mar 2;7(1):4. doi: 10.1186/s40842-021-00117-8.
34. Correia AS, Cardoso A, Vale N. Oxidative stress in depression: The link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants (Basel). 2023 Feb 13;12(2):470. doi: 10.3390/antiox12020470.
35. Serhiyenko VA, Serhiyenko AA. Diabetes mellitus and congestive heart failure. Mìžnarodnij endokrinologìčnij žurnal. 2022;18(1):57-69. doi: 10.22141/2224-0721.18.1.2022.1146.
36. Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023 Oct;97(10):2499-2574. doi: 10.1007/s00204-023-03562-9.
37. Maydych V. The interplay between stress, inflammation, and emotional attention: Relevance for depression. Front Neurosci. 2019 Apr 24;13:384. doi: 10.3389/fnins.2019.00384.
38. Mehdi S, Wani SUD, Krishna KL, Kinattingal N, Roohi TF. A review on linking stress, depression, and insulin resistance via low-grade chronic inflammation. Biochem Biophys Rep. 2023 Nov 1;36:101571. doi: 10.1016/j.bbrep.2023.101571.
39. Mbiydzenyuy NE, Qulu LA. Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metab Brain Dis. 2024 Dec;39(8):1613-1636. doi: 10.1007/s11011-024-01393-w.
40. Penninx BWJH, Lamers F, Jansen R, et al. Immuno-metabo-lic depression: from concept to implementation. Lancet Reg Health Eur. 2024 Dec 18;48:101166. doi: 10.1016/j.lanepe.2024.101166.
41. Zhao Y, Yang L, Sahakian BJ, et al. The brain structure, immunometabolic and genetic mechanisms underlying the association between lifestyle and depression. Nat. Mental Health. 2023;1:736-750. doi: 10.1038/s44220-023-00120-1.
42. McIntyre RS, Alsuwaidan M, Baune BT, et al. Treatment-resistant depression: definition, prevalence, detection, management, and investigational interventions. World Psychiatry. 2023 Oct;22(3):394-412. doi: 10.1002/wps.21120.
43. Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023 Jul 12;8(1):267. doi: 10.1038/s41392-023-01486-5.
44. Demori I, Grasselli E. The role of the stress response in metabolic dysfunction-associated fatty liver disease: A psychoneuroendocrineimmunology-based perspective. Nutrients. 2023 Feb 3;15(3):795. doi: 10.3390/nu15030795.
45. Muro P, Zhang L, Li S, et al. The emerging role of oxidative stress in inflammatory bowel disease. Front Endocrinol (Lausanne). 2024 Jul 15;15:1390351. doi: 10.3389/fendo.2024.1390351.
46. Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, et al. Central and peripheral inflammation: A common factor causing addictive and neurological disorders and aging-related pathologies. Int J Mol Sci. 2023 Jun 13;24(12):10083. doi: 10.3390/ijms241210083.
47. Chiesa ST, Charakida M, Georgiopoulos G, et al. Glycoprotein acetyls: A novel inflammatory biomarker of early cardiovascular risk in the young. J Am Heart Assoc. 2022 Feb 15;11(4):e024380. doi: 10.1161/JAHA.121.024380.
48. Bays HE, Kulkarni A, German C, et al. Ten things to know about ten cardiovascular disease risk factors — 2022. Am J Prev Cardiol. 2022 Apr 6;10:100342. doi: 10.1016/j.ajpc.2022.100342.
49. Arnett DK, Blumenthal RS, Albert MA, et al. ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2019 Sep 10;140(11):e596-e646. doi: 10.1161/CIR.0000000000000678.
50. Stylianou KS, Fulgoni VL, Jolliet O. Publisher correction: small-targeted changes can yield substantial gains for human health and the environment. Nat Food. 2021;2:743. doi: 10.1038/s43016-021-00373-y.
51. Kim Y, Roberts AL, Rimm EB, et al. Posttraumatic stress disorder and changes in diet quality over 20 years among US women. Psychol Med. 2021 Jan;51(2):310-319. doi: 10.1017/S0033291719003246.
52. Wang R, Zeng Y, Xu J, He M. Thiamine use is associated with better outcomes for traumatic brain injury patients. Front Nutr. 2024 Jul 5;11:1362817. doi: 10.3389/fnut.2024.1362817.
53. Bekdash RA. Epigenetics, Nutrition, and the brain: Improving mental health through diet. Int J Mol Sci. 2024 Apr 4;25(7):4036. doi: 10.3390/ijms25074036.
54. Zhu Y, Ying T, Xu M, et al. Joint B vitamin intake and type 2 diabetes risk: The mediating role of inflammation in a prospective Shanghai cohort. Nutrients. 2024 Jun 16;16(12):1901. doi: 10.3390/nu16121901.
55. Ekundayo BE, Adewale OB, Obafemi BA, Afolabi OB, Obafemi TO. Management of Alzheimer’s disease and related neurotoxic pathologies: Role of thiamine, pyridoxine and cobalamin. Eur J Pharmacol. 2024 Nov 5;982:176958. doi: 10.1016/j.ejphar.2024.176958.
56. Hrubša M, Siatka T, Nejmanová I, et al., On behalf of the Oemonom. Biological properties of vitamins of the B-complex, part 1: Vitamins B1, B2, B3, and B5. Nutrients. 2022 Jan 22;14(3):484. doi: 10.3390/nu14030484.
57. Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci. 2023 Nov 9;17:1294420. doi: 10.3389/fncel.2023.1294420.
58. Mrowicka M, Mrowicki J, Dragan G, Majsterek I. The importance of thiamine (vitamin B1) in humans. Biosci Rep. 2023 Oct 31;43(10):BSR20230374. doi: 10.1042/BSR20230374.
59. Calderon-Ospina CA, Nava-Mesa MO, Paez-Hurtado AM. Update on safety profiles of vitamins B1, B6, and B12: A narrative review. Ther Clin Risk Manag. 2020 Dec 22;16:1275-1288. doi: 10.2147/TCRM.S274122.
60. Eshak ES, Arafa AE. Thiamine deficiency and cardiovascular disorders. Nutr Metab Cardiovasc Dis. 2018;28:965-972. doi: 10.1016/j.numecd.2018.06.013.
61. Lewis MJ. Alcoholism and nutrition: A review of vitamin supplementation and treatment. Curr Opin Clin Nutr Metab Care. 2020 Mar;23(2):138-144. doi: 10.1097/MCO.0000000000000622.
62. Serhiyenko VA, Serhiyenko AA. Ezetimibe and diabetes mellitus: a new strategy for lowering cholesterol. Mìžnarodnij endokrinologìčnij žurnal. 2022;18(5):63-75. doi: 10.22141/2224-0721.18.5.2022.1190.
63. Wen H, Niu X, Zhao R, et al. Association of vitamin B1 with cardiovascular diseases, all-cause and cardiovascular mortality in US adults. Front Nutr. 2023;10:1175961. doi: 10.3389/fnut.2023.1175961.
64. Kareem O, Nisar S, Tanvir M, Muzaffer U, Bader GN. Thiamine deficiency in pregnancy and lactation: implications and present perspectives. Front Nutr. 2023 Apr 20;10:1080611. doi: 10.3389/fnut.2023.1080611.
65. Marrs C, Lonsdale D. Hiding in plain sight: modern thiamine deficiency. Cells. 2021 Sep 29;10(10):2595. doi: 10.3390/cells10102595.
66. Smith TJ, Johnson CR, Koshy R, et al. Thiamine deficiency disorders: A clinical perspective. Ann N Y Acad Sci. 2021;1498:9-28. doi: 10.1111/nyas.14536.
67. Duc HN, Oh H, Yoon IM, Kim MS. Association between levels of thiamine intake, diabetes, cardiovascular diseases and depression in Korea: a national cross-sectional study. J Nutr Sci. 2021;10:e31. doi: 10.1017/jns.2021.23.
68. Nguyen HD, Oh H, Kim MS. An increased intake of thiamine diminishes the risk of metabolic syndrome in the Korean population with various comorbidities. Diabetes Metab Syndr. 2022 Mar;16(3):102443. doi: 10.1016/j.dsx.2022.102443.
69. Nga NTT, Quang DD. Unraveling the antioxidant potential of thiamine: thermochemical and kinetics studies in aqueous phase using DFT. VJCH. 2019;57(4):485-490. doi: 10.1002/vjch.201900081.
70. Serhiyenko VA, Serhiyenko LM, Serhiyenko AA. Recent Advances in the Treatment of Neuropathies in Type 2 Diabetes Mellitus patients: Focus on Benfotiamine (review and own data). In: Berhardt LV, editor. Advances in Medicine and Biology. New York, NY: Nova Science Publishers; 2020. Р. 1-80.
71. Riyapa D, Rinchai D, Muangsombut V, et al. Transketolase and vitamin B1 influence on ROS-dependent neutrophil extracellular traps (NETs) formation. PLoS One. 2019 Aug 15;14(8):e0221016. doi: 10.1371/journal.pone.0221016.
72. Hirata SI, Sawane K, Adachi J, et al. Vitamin B1 supports the differentiation of T Cells through TGF-β superfamily production in thymic stromal cells. iScience. 2020 Jul 31;23(9):101426. doi: 10.1016/j.isci.2020.101426.
73. Mikkelsen K, Apostolopoulos V. Vitamin B1, B2, B3, B5, and B6 and the Immune System. In: Mahmoudi M, Rezaei N, editors. Nutrition and Immunity. Berlin/Heidelberg: Springer Nature Switzerland AG; 2019. Р. 115-125. doi: 10.1007/978-3-030-16073-9_7.
74. Peterson CT, Rodionov DA, Osterman AL, Peterson SN. B Vitamins and their role in immune regulation and cancer. Nutrients. 2020 Nov 4;12(11):3380. doi: 10.3390/nu12113380.
75. Serhiyenko VA, Serhiyenko LM, Serhiyenko AA. Features of Circadian Rhythms of Heart Rate Variability, Arterial Stiffness and Outpatient Monitoring of Blood Pressure in Diabetes Mellitus: Data, Mechanisms and Consequences. In: Sinha RP, editors. Circadian Rhythms and Their Importance. New York, NY: Nova Science Publishers; 2022. Р. 279-341. doi: 10.52305/GXME8274.
76. Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022 Oct 12;12:985363. doi: 10.3389/fonc.2022.985363.
77. Rebelos E, Anastasiou IA, Tentolouris A, Papanas N, Jude E. What is new on diabetic neuropathy? Insights from the 2023 ADA and EASD conferences. Int J Low Extrem Wounds. 2024 Feb 28:15347346241233938. doi: 10.1177/15347346241233938.
78. Serhiyenko VA, Serhiyenko LM, Serhiyenko AA. Omega-3 polyunsaturated fatty acids in the treatment of diabetic cardiovascular autonomic neuropathy: A review. In: Moore SJ, editor. Omega-3: Dietary sources, biochemistry and impact on human health. New York, NY: Nova Science Publishers; 2017. Р. 79-154.
79. Muley A, Fernandez R, Green H, Muley P. Effect of thiamine supplementation on glycaemic outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. BMJ Open. 2022 Aug 25;12(8):e059834. doi: 10.1136/bmjopen-2021-059834.
80. Božić MM, Milenković M, Pavlović DM, Stamenković M, Pavlović AM. Vitamin B1, eye and brain. Srp Celok Lek. 2022 Mar-Apr;150(3-4):233-237. doi: 10.2298/SARH210929019B.
81. Sambon M, Wins P, Bettendorff L. Neuroprotective effects of thiamine and precursors with higher bioavailability: Focus on benfotiamine and dibenzoylthiamine. Int J Mol Sci. 2021 May 21;22(11):5418. doi: 10.3390/ijms22115418. 
82. Sheng L, Cao W, Lin P, et al. Safety, tolerability and pharmacokinetics of single and multiple ascending doses of benfotiamine in healthy subjects. Drug Des Devel Ther. 2021 Mar 9;15:1101-1110. doi: 10.2147/DDDT.S296197.
83. Sambon M, Gorlova A, Demelenne A, et al. Dibenzoylthiamine has powerful antioxidant and anti-inflammatory properties in cultured cells and in mouse models of stress and neurodegeneration. Biomedicines. 2020 Sep 18;8(9):361. doi: 10.3390/biomedicines8090361.
84. Coles CA, Woodman KG, Gibbs EM, Crosbie RH, White JD, Lamandé SR. Benfotiamine improves dystrophic pathology and exercise capacity in MDX mice by reducing inflammation and fibrosis. Hum Mol Genet. 2024 Jul 22;33(15):1339-1355. doi: 10.1093/hmg/ddae066.
85. Beltramo E, Mazzeo A, Porta M. Thiamine and diabetes: back to the future? Acta Diabetol. 2021 Nov;58(11):1433-1439. doi: 10.1007/s00592-021-01752-4.
86. Ziegler D, Reiners K, Strom A, Obeid R. Association between diabetes and thiamine status — A systematic review and meta-analysis. Metabolism. 2023 Jul;144:155565. doi: 10.1016/j.meta-bol.2023.155565.
87. Cassiano LMG, Oliveira MS, Pioline J, Salim ACM, Coimbra RS. Neuroinflammation regulates the balance between hippocampal neuron death and neurogenesis in an ex vivo model of thiamine deficiency. J Neuroinflammation. 2022 Nov 14;19(1):272. doi: 10.1186/s12974-022-02624-6.
88. Bozic I, Lavrnja I. Thiamine and benfotiamine: Focus on their therapeutic potential. Heliyon. 2023 Nov 7;9(11):e21839. doi: 10.1016/j.heliyon.2023.e21839.
89. Moraes RCM, Singulani MP, Gonçalves AC, Portari GV, Torrão ADS. Oral benfotiamine reverts cognitive deficit and increase thiamine diphosphate levels in the brain of a rat model of neurodegeneration. Exp Gerontol. 2020 Nov;141:111097. doi: 10.1016/j.exger.2020.111097.
90. Serhiyenko VA, Serhiyenko LM, Sehin VB, Serhiyenko AA. Effect of alpha-lipoic acid on arterial stiffness parameters in type 2 diabetes mellitus patients with cardiac autonomic neuropathy. Endocr Regul. 2021 Dec 7;55(4):224-233. doi: 10.2478/enr-2021-0024.
91. Bettendorff L. Synthetic thioesters of thiamine: promising tools for slowing progression of neurodegenerative diseases. Int J Mol Sci. 2023 Jul 10;24(14):11296. doi: 10.3390/ijms241411296.
92. Pan D, Xu L, Guo M. The role of protein kinase C in diabetic microvascular complications. Front Endocrinol (Lausanne). 2022 Aug 17;13:973058. doi: 10.3389/fendo.2022.973058.
93. Qin P, He C, Ye P, Li Q, Cai C, Li Y. PKCδ regulates the vascular biology in diabetic atherosclerosis. Cell Commun Signal. 2023 Nov 16;21(1):330. doi: 10.1186/s12964-023-01361-4.
94. Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer’s disease: A systematic review and qualitative meta-analysis. Neurobiol Dis. 2024 Jun 15;196:106485. doi: 10.1016/j.nbd.2024.106485.
95. Hansen GE, Gibson GE. The α-ketoglutarate dehydrogenase complex as a hub of plasticity in neurodegeneration and regene-ration. Int J Mol Sci. 2022 Oct 17;23(20):12403. doi: 10.3390/ijms232012403.
96. Gibson GE, Feldman HH, Zhang S, Flowers SA, Luchsinger JA. Pharmacological thiamine levels as a therapeutic approach in Alzheimer’s disease. Front Med. 2022;9:1033272. doi: 10.3389/fmed.2022.1033272.
97. Gibson GE, Luchsinger JA, Cirio R, et al. Benfotiamine and cognitive decline in Alzheimer’s disease: Results of a randomized placebo-controlled phase iia clinical trial. J Alzheimers Dis. 2020;78(3):989-1010. doi: 10.3233/JAD-200896.
98. Tapias V, Jainuddin S, Ahuja M, et al. Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy. Hum Mol Genet. 2018 Aug 15;27(16):2874-2892. doi: 10.1093/hmg/ddy201.
99. Pan X, Chen Z, Fei G, et al. Long-term cognitive improvement after benfotiamine administration in patients with Alzheimer’s disease. Neurosci Bull. 2016 Dec;32(6):591-596. doi: 10.1007/s12264-016-0067-0.
100. Lee T, Lee H. Shared blood transcriptomic signatures between Alzheimer’s disease and diabetes mellitus. Biomedicines. 2021 Jan 4;9(1):34. doi: 10.3390/biomedicines9010034.
101. Djedovic N, Božić I, Miljković Đ, Lavrnja I. Benfotiamine reduces dendritic cell inflammatory potency. Endocr Metab Immune Disord Drug Targets. 2021;21(7):1344-1351. doi: 10.2174/1871530320999200905114135.
102. Milosevic K, Stevanovic I, Bozic ID, et al. Agmatine mitigates inflammation-related oxidative stress in BV-2 cells by inducing a pre-adaptive response. Int J Mol Sci. 2022 Mar 24;23(7):3561. doi: 10.3390/ijms23073561.
103. Stirban OA, Zeller-Stefan H, Schumacher J, et al. Treatment with benfotiamine in patients with diabetic sensorimotor polyneuropathy: A double-blind, randomized, placebo-controlled, parallel group pilot study over 12 months. J Diabetes Complications. 2020 Dec;34(12):107757. doi: 10.1016/j.jdiacomp.2020.107757.
104. Ziegler D, Papanas N, Schnell O, et al. Current concepts in the management of diabetic polyneuropathy. J Diabetes Investig. 2021 Apr;12(4):464-475. doi: 10.1111/jdi.13401.
105. Bönhof GJ, Sipola G, Strom A, et al. D. BOND study: a randomised double-blind, placebo-controlled trial over 12 months to assess the effects of benfotiamine on morphometric, neurophysiological and clinical measures in patients with type 2 diabetes with symptomatic polyneuropathy. BMJ Open. 2022 Feb 3;12(2):e057142. doi: 10.1136/bmjopen-2021-057142.
106. Vatsalya V, Li F, Frimodig J, Gala KS, et al. Repurposing treatment of Wernicke-Korsakoff syndrome for Th-17 cell immune storm syndrome and neurological symptoms in COVID-19: thiamine efficacy and safety, in-vitro evidence and pharmacokinetic profile. Front Pharmacol. 2021 Mar 2;11:598128. doi: 10.3389/fphar.2020.598128.
107. Safavi M, Hosseini-Sharifabad A, Seyed-Yousefi Y, Rabbani M. Protective effects of citicoline and benfotiamine each alone and in combination on streptozotocin-induced memory impairment in mice. Clin Psychopharmacol Neurosci. 2020 Feb 29;18(1):81-92. doi: 10.9758/cpn.2020.18.1.81.
108. Starling-Soares B, Carrera-Bastos P, Bettendorff L. Role of the synthetic B1 vitamin sulbutiamine on health. J Nutr Metab. 2020 Apr 20;2020:9349063. doi: 10.1155/2020/9349063.
109. Putnam EE, Goodman AL. B vitamin acquisition by gut commensal bacteria. PLoS Pathog. 2020 Jan 23;16(1):e1008208. doi: 10.1371/journal.ppat.1008208.
110. Charitos IA, Inchingolo AM, Ferrante L, et al. The gut microbiota’s role in neurological, psychiatric, and neurodevelopmental disorders. Nutrients. 2024 Dec 22;16(24):4404. doi: 10.3390/nu16244404.

Вернуться к номеру